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Abstract. We consider, in turn, three systems being acted upon by a regularly pulsed harmonic
potential (PHP). These are (i) a classical particle, (ii) a quantum particle, and (iii) a directed
line. We contrast the mechanics of the first two systems by parametrizing their bands of stability
and periodicity. Interesting differences due to quantum fluctuations are examined in detail. The
fluctuations of the directed line are calculated in the two cases of a binding PHP, and an
unbinding PHP. In the latter case there is a finite maximum line length for a given potential
strength.

1. Introduction

Within the modelling of many problems in mechanics, the potential is taken to be time-
independent, and sets the stage for the ensuing particle dynamics. Quite generally, however,
the potential may have its own (parametric) dynamics: the stage is shifting beneath the
actors’ feet, so to speak. In quasistatic problems this parametric dynamics will be on
such slow timescales that it may be safely ignored; or else, an adiabatic treatment may be
used [1]. On the other hand, if the timescale is of exceedingly rapid character, it may be
easier to forget the potential altogether, and model the parametric variation through some
fast degrees of freedom. The Langevin equation represents a possible outcome of such
a procedure [2]. There may be situations where neither the quasistatic nor the Langevin
approaches is appropriate. In these cases, one is obliged to face the time-dependence of
the potential head-on—this leads to real analytic difficulties, especially in the quantum
mechanical case, where one must abandon the notion of eigenstates, and tackle the time-
dependent Schrödinger equation directly.

The analytic challenge of explicitly time-dependent mechanics is great, and exactly
solvable cases are valuable for providing basic insights. The harmonic potential is widely
studied in many areas of physics, due partly to its inherent solvability. It is also one of the
most ubiquitous potentials in Nature, due to the existence of near-equilibrium states. It is
for these reasons that the classical and quantum mechanics of the explicitly time-dependent
harmonic potential have been studied for many years [1, 3–7].

One of the most extreme limits within this class of problems is that of the pulsed
harmonic potential (PHP). That is to say, the potential exists for extremely short instants,
between which there is no potential whatsoever. This may be represented by

V (x, t) = v(x)
∑
n

δ(t − τn) (1)

where in particular

v(x) = (λ/2)x2 (2)
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and for regular pulsingτn = nτ . (An alternative terminology has arisen in the field of
quantum chaos [8], in which one speaks of the system being ‘kicked’ by such a potential.)
Apart from more obvious manifestations of such a potential (in which an experimenter
externally pulses a system with some form of trapping potential), one can envisage such a
situation arising in the frame of reference of a rapidly moving particle as it regularly passes
through regions within which a static harmonic potential exists.

To our knowledge there is no complete treatment of this system. In fact, we suspect
that its apparent simplicity may have persuaded workers to add complicating features. We
are aware of similar harmonic models in the field of quantum chaos [9, 10], but these are
typically considered on a toroidal phase space in order to make closer contact to classically
chaotic systems. In such a case, it is known that only periodic orbits exist in the quantum
case, whereas the classical system may be chaotic depending on the curvature of the
potential. We are content to study the system on the full phase space. A great deal of
effort has also been directed towards the problem of a ‘kicked harmonic oscillator’ [11], by
which is meant a static harmonic potential periodically pulsed with some spatially periodic
potential. This is used to model the behaviour of a trapped particle under the action of a
laser.

To give a unifying flavour to this work, we shall study three manifestations of the
problem. In section 2 we consider a classical particle in a PHP and parametrize the region
of stability, along with its associated periodic and quasiperiodic dynamics. In sections 3–5
we consider a quantum particle in a PHP. Sections 3 and 4 are concerned with a wavepacket
centred at the origin, which has no classical analogue. Two different analytic formulations
of the problem are presented, each with their advantages in application. We parametrize
the stability and periodicity of the dynamics (including a bizarre cycle with periodτ ) and
also examine the limit ofτ → 0 which we compare to the static harmonic potential. In
section 5 we examine an off-centred wavepacket. Contact is made with the classical system
via Ehrenfest’s theorem, and we also show that the expectation value of the Hamiltonian
splits neatly into two pieces which are, respectively, purely quantum and classical in origin.
In section 6 we study the third manifestation of a PHP: namely, a directed line in thermal
equilibrium with a set of planar harmonic potentials. We determine the asymptotic transverse
fluctuations of the line for binding potentials, and the finite maximal length of the line for
unbinding potentials. We end the paper with section 7, in which we give a detailed summary
of our results, along with some general conclusions.

2. Classical particle in PHP

We consider a classical particle of massm in a PHP, which is equivalent to the periodic
impulsive force

F(x, t) = −λx
∞∑
n=1

δ(t − nτ). (3)

The particle will suffer a discontinuous change in momentum with a period ofτ . In the
intervening intervals, the particle changes its position with a constant velocity. It is sufficient
to describe the particle’s trajectory by

xn ≡ lim
ε→0

x(nτ − ε) pn ≡ lim
ε→0

p(nτ − ε). (4)

These quantities satisfy the difference equations

xn+1 = xn + (τ/m)pn+1

pn+1 = pn − λxn.
(5)



Three manifestations of the pulsed harmonic potential 9623

We must also specify the initial conditions for the particle:x(0) andp(0). The initial values
for the difference equations may then be given asp1 = p(0), andx1 = x(0)+ (τ/m)p(0).

It is convenient to rescale the momentum toρn = (τ/m)pn, so that the difference
equations now take the form

xn+1 = xn + ρn+1

ρn+1 = ρn − ξxn
(6)

where

ξ = λτ/m (7)

is the dimensionless coupling to the potential. It is a simple matter to eliminate one set of
the difference functions ({xn} say), to give the single second-order difference equation

ρn+2 = βρn+1− ρn (8)

whereβ = 2−ξ . We supply the two required initial dataρ1 andρ0 ≡ ρ1+ξ(x1−ρ1). (One
may also proceed by recasting equation (6) in matrix form and determining the dynamics
and stability of the system from the associated eigenvalues. We shall use the second-order
difference equation in order to make closer contact with the analysis of the quantum system
in the following section.)

This difference equation may be easily solved by introducing the generating function

R(z) =
∞∑
n=0

znρn (9)

which may be inverted via the contour integral,

ρn = 1

2π i

∫
C

dz

zn+1
R(z) (10)

whereC encircles the origin anticlockwise (with a radius chosen small enough so as not to
enclose any singularities bar the pole at the origin).

Summing the difference equation forρ with a weight of zn yields the following
expression for the generating function:

R(z) = (1− βz)ρ0+ zρ1

z2− βz+ 1
. (11)

This function has two simple poles located atα1 andα2 where

α1,2 = β

2
± 1

2
(β2− 4)1/2. (12)

For |β| > 2 the poles lie on the real axis and one of them has a modulus less than unity.
Referring to equation (10), we see this implies that|ρn| grows unboundedly with increasing
n. Thus, stable evolution of the particle is only possible for|β| 6 2 (corresponding
to 0 6 ξ 6 4), which we now examine in more detail. Defining a parameterφ via
β = 2 cosφ, we haveα1,2 = e±iφ . We evaluate the contour integral in equation (10) by
noting that the contourC may be deformed around the singularities away from the origin
such that

∫
C
= − ∫sing. In other words, the required integral alongC is equal to minus

the residues from the two poles. Evaluating these residues, and performing some algebraic
manipulations, we arrive at the result

ρn+1 = 1

sinφ
[ρ1 sin(n+ 1)φ − ρ0 sinnφ]. (13)
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It is clear from the above expression that some form of cyclic behaviour with periodnτ

will occur when the value ofξ (and thusβ) is adjusted so that sinnφ = 0. In this case
we haveφ = Mπ/n, whereM = 1, . . . , [n/2], and consequently,ρn+k = (−1)Mρk. From
equation (6) it is easy to check that such a value ofφ also impliesxn+k = (−1)Mxk.

Let us classify two types of periodic motion: PMI(n)—a motion for which all measurable
quantities take on the same values with a period ofnτ ; and PMII(n)—a motion for which
only the energy of the system has a period ofnτ . Now, the energy (between pulses) is
simply given by

En = m

2

(ρn
τ

)2
. (14)

Thus, PMII(n) occurs forany value of φ satisfying sinnφ = 0. However, PMI(n) only
occurs for values ofφ which are anevenmultiple of π/n. So the simplest PMII motion
occurs forn = 2, which corresponds toξ = 2. However, the simplest PMI motion occurs
for n = 3 with M = 2, and corresponds toξ = 3. We stress that these periodic motions
exist once the parameterξ is tuned to an appropriate value, regardless of the initial data
(x(0), p(0)).

As a final remark, we note that there exists one special PMI motion which has a period
of 2τ . This may be seen directly from the first-order difference equations (6). Such a
motion is possible if one tunesξ = 4 and adjusts the initial data such thatρ1 = 2x1.

3. Quantum particle in PHP: 1

In this and the next two sections we shall examine the evolution of a Gaussian wavepacket
under the influence of a PHP. We shall highlight the similarities of the mean motion to
the classical dynamics described in section 2, as well as some subtle effects which are of
a purely quantum origin. In this section we shall examine the evolution of a wavepacket
centred at the origin, and we shall use direct evaluation of Gaussian integrals to arrive at
our results. In the next section, we study the same problem, but with the aid of Fourier
decomposition. Both methods yield the same results, but in surprisingly different formats,
which are individually suited to the calculation of different quantities. The final section
of the three is concerned with the evolution of an off-centred wavepacket (which has non-
zero expectation values for position and momentum and may therefore be compared to the
classical case).

Our starting point is Schrödinger’s equation for the wavefunctionψ(x, t), with the
potential given as in equations (1) and (2):

ih̄∂tψ = − h̄
2

2m
∂2
xψ +

λ

2
x2
∞∑
n=1

δ(t − nτ)ψ. (15)

As an initial condition we take a centred Gaussian

ψ(x, 0) = (2BR/π)1/4 exp[−Bx2] (16)

whereB is complex, andBR ≡ Re [B] > 0. This choice is made on the grounds of
simplicity, but we can imagine preparing such a state from the lowest eigenstate of a static
harmonic potential. The evolution of the wavefunction between pulses is simply free particle
propagation. Therefore we can describe the dynamics by the set of functions{ψn(x)}, where

ψn(x) = lim
ε→0

ψ(x, nτ − ε). (17)

It is not a trivial matter to determine the change in the wavefunction due to a pulsed potential.
We refer the reader to [12] for a full discussion of this point (in the statistical mechanics
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context). The result is that the wavefunction suffers a discontinuity in phase. Thus, the
probability density of the particle is unchanged in the immediate temporal vicinity of the
pulse. With regard to the general pulsed potential given in equation (1), the wavefunction
immediately after the pulse is given by

ψ+n (x) ≡ lim
ε→0

ψ(x, nτ + ε) = ψn exp

[
− iv(x)

h̄

]
(18)

which has a very natural form when viewed from the path-intregral perspective [13]. In the
present case of a PHP we have

ψ+n (x) = ψn exp

[
− iλx2

2h̄

]
. (19)

The free particle propagation between pulses may be written as

ψn+1(x) =
∫

dx ′G(x − x ′, τ )ψ+n (x ′) (20)

where the Green function has the familiar form [14]

G(x, t) =
( m

2π ih̄t

)1/2
exp

[
imx2

2h̄t

]
. (21)

Combining equations (19) and (20) yields the iteration rule (which resembles a transfer
matrix in the statistical mechanics context) for the functions{ψn(x)}; namely,

ψn+1(x) =
∫

dx ′G(x − x ′, τ )exp

[
− iλx ′2

2h̄

]
ψn(x

′). (22)

It is convenient to rescalex → y = x/b, whereb = (h̄τ/m)1/2 and define the dimensionless
parameters,ξ = λτ/m (cf equation (7) in section 2), andη = 2Bb2. The iteration rule now
takes the form

ψn+1(y) = (2π i)−1/2
∫

dy ′ exp

[
i

2
(y − y ′)2− iξ

2
y ′2
]
ψn(y

′) (23)

and from equation (16), the initial wavefunction is given by

ψ(y, 0) = (ηR/πb2)1/4 exp[−ηy2/2] (24)

whereηR = Re [η].
We shall concentrate on calculating two important physical quantities: the probability

densityP(x, t) = |ψ(x, t)|2 and the expectation value of the Hamiltonian (between pulses).
The latter is defined at the moment prior to the pulse:

En =
∫

dx ψn(x)
∗
[
− h̄

2

2m
∂2
x

]
ψn(x) (25)

but is constant for the duration of the interval between two adjacent pulses.
The iteration rule (23) clearly shows that the wavefunction will have a Gaussian form

for all times, given that its initial form is chosen to be a Gaussian. Thus, we write the
general form forψn (in the unscaledx coordinate) as

ψn(x) = An exp

[
−σn x

2

2b2

]
(26)

whereAn andσn are complex numbers. The probability density is given by

Pn(x) = |An|2 exp[−Cnx2/b2] (27)
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whereCn = (σn + σ ∗n )/2 = πb2|An|4, the latter equality following from normalization.
From eqautions (25) and (26) one also has

En = h̄

2τ

|σn|2
(σn + σ ∗n )

. (28)

It is useful to define

In ≡
∫

dx ψn(x) = An(2πb2/σn)
1/2 (29)

which may be inverted to yield

σn = 2πb2(An/In)
2. (30)

Therefore, we may determine all the quantities of interest by evaluatingAn (the value of
the wavefunction at the origin), andIn (the spatial integral of the wavefunction).

As a first step in the evaluation of these two quantities, let us explicitly iterate the
functionψn back to the initial condition. Using equations (23) and (24) we have

ψn(y) = (ηR/πb2)1/4(2π i)−n/2
∫

dyn−1 . . .

∫
dy0 exp[− 1

2ylM
(n)
lm ym] (31)

where then × n matrix M (n) has diagonal elementsM(n)

00 = η − i, M(n)
ll = −iβ, and

off-diagonal elementsM(n)
lm = i for |l −m| = 1, andM(n)

lm = 0 otherwise.
Thus, the wavefunction at the origin is given by

An = (ηR/πb2)1/4i−n/2q−1/2
n (32)

whereqn ≡ detM (n). Also, integrating the aboven-fold integral overy, we find

In = (2πb2)1/2(ηR/πb2)1/4i−n/2(−iqn + qn−1)
−1/2. (33)

So we may describe the entire dynamics from the set of determinants{qn}. Before explicitly
calculating these functions, we shall first express the physical quantities of interest in terms
of {qn}. From equation (30) we may combine the above two expressions to give (forn > 1)

σn = −i

(
qn + iqn−1

qn

)
. (34)

We therefore have the explicit form for the wavefunction (forn > 1):

ψn(x) = (ηR/πb2)1/4i−n/2q−1/2
n exp

{
ix2

2b2

(
qn + iqn−1

qn

)}
. (35)

The wavefunction at intervening times may be easily found by propagating the above
form with the Green function (21). Straightforward integration yields

ψ(x, (n− 1)τ + θτ) = (ηR/πb2)1/4i−n/2[θqn − i(1− θqn−1]−1/2

× exp

{
ix2

2b2

[
qn + iqn−1

θqn − i(1− θqn−1)

]}
(36)

whereθ ∈ [0, 1].
We may determine the probability density just prior to pulsing (i.e. the functionPn(x))

either from our knowledge ofAn (cf equation (27)), or by simply taking the modulus squared
of ψn as given in equation (35). The results of these procedures, although strictly identical,
are not obviously so, since their equivalence requires the following identity to hold:

Re [qnq
∗
n−1] = ηR. (37)
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The proof of this statement will be given shortly. The explicit form of the probability
density is given by (for general times)

P(x, (n− 1)τ + θτ) = (ηR/πb2)1/2

|θqn − i(1− θ)qn−1| exp

{
−x

2

b2

ηR

|θqn − i(1− θ)qn−1|2
}
. (38)

The important information contained in the probability density is the temporal evolution of
the width of the Gaussian wavepacket. Just prior to pulsing we havePn ∼ exp[−x2/γ 2

n ],
where the widthγn is simply given by

γn = |qn|γ0 (39)

where the initial widthγ0 = b/
√
ηR. Finally, for the expectation value of the Hamiltonian

between pulses (i.e. the mean energy), we may derive from equations (28), (34) and (37)
the result

En = h̄

4τηR
|qn + iqn−1|2. (40)

We now turn to the evaluation of the set of determinants{qn}. From the definition of
the matrixM (n) it is straightforward to derive the following iteration rule

qn+2 = −iβqn+1+ qn (41)

whereβ = 2− ξ . This is very similar to the second-order difference equation (8) that we
derived previously for the rescaled momenta in the classical system. In the present case,
the initial data areq0 = 1, andq1 = η − i. Before proceeding to solve equation (41), let
us first prove the assertion (37). Multiplying through the difference equation (41) byq∗n+1
yields

qn+2q
∗
n+1 = −iβ|qn+1|2+ q∗n+1qn. (42)

Now the first term on the right-hand side is purely imaginary, thus the bilinear object
Re [qnq∗n−1] is independent ofn and therefore equal to

Re [qnq
∗
n−1] = Re [q1q

∗
0] = Re [η − i] = ηR (43)

as required.
The solution of the difference equation (41) may be found by use of a generating

function just as in the classical system. Bounded evolution of|qn| is again limited to the
parameter regime|β| 6 2, which corresponds to 06 ξ 6 4. It is convenient to define the
parameterφ via

cosφ = β/2= 1− ξ/2 (44)

as in the classical system. The explicit form forqn is found to be

qn = (−i)n

sinφ
[i(η − i) sinnφ − sin(n− 1)φ]. (45)

It is very tempting to make a direct connection between these results, and those for the
classical system. However, in doing so we would lose some of the subtleties contained
within. Consider first, the present quantum dynamics has no classical analogue, since the
expectation values of the position and momentum remain zero for all times. Second, there
is a difference between the types of periodic motion in the quantum system considered here,
and the classical system. In the latter we found it useful to classify periodic behaviour into
two categories: PMI(n) (all physical quantities having periodnτ ) and PMII(n) (the energy
having periodnτ ). The condition for motion of the first class wasφ = Mπ/n, with M
even; whereas the condition for the second class wasφ = Mπ/n with M odd or even. In
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Figure 1. Energy portrait for a classical particle of unit mass in a PHP for 06 ξ 6 2, and
initial conditionsx(0) = 1 andρ1 = 1

2 .

the present case of quantum motion, it is clear from equation (45) that periodic behaviour
is to be expected for sinnφ = 0 which corresponds toφ = Mπ/n with M = 1, . . . , [n/2].
However, apart from setting the scale ofφ, the integerM plays no other role, since it appears
in the wavefunction as a constant phase factor e−iMπ/2. So there is no distinction between
PMI and PMII motions in the quantum dynamics of a centred Gaussian wavefunction.

It is of interest to compare the energy portraits for the classical and quantum motions.
We scan through values ofξ ∈ (0, 2) and follow the evolution of the energy (as given by
equations (14) and (40) respectively) for 20 or so iterations, all of which values are plotted.
We refer the reader to figures 1–5 for the classical (with typical values ofx(0) andp(0))
and quantum (with varying initial parameterη) portraits. Despite the similarity in the values
of ξ at which the periodic orbits occur, we see a distinct difference in the bounding curves
Emin(ξ) andEmax(ξ) for the minumum and maximum energies. In the classical case,Emin

is essentially zero andEmax is a monotonically increasing function of the couplingξ . In the
quantum case,Emin maintains a distinct gap from zero, and the differenceEmax− Emin is
non-monotonic withξ . It would be of interest to determine the analytic properties of these
bounding curves, but this is beyond the scope of the present work.

We shall make a more physical connection between the quantum and classical motions
in section 5 when we consider an off-centred wavefunction which allows the particle to
maintain non-zero expectation values of both position and momentum. First, however, we
present an alternative treatment of the centred Gaussian wavefunction, which will allow us
to study some other properties of this system more easily.

4. Quantum particle in PHP: 2

Although the calculations of the previous section were reasonably straightforward, they still
required the evaluation of cumbersomen-fold Gaussian integrals. It might be hoped that a
simpler derivation of the results is possible, since the wavefunction evolves by free wave
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Figure 2. Energy portrait for a quantum particle in a PHP for 06 ξ 6 2 with h̄ = τ = 1, and
η = 1− i/2.
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Figure 3. As figure 2 withη = 1.

propagation between pulses, which may be handled more easily in Fourier space. The
purpose of this section is to derive an iteration rule for the wavefunction using this Fourier
method. The surprise is that the rule (or difference equation) turns out to be nonlinear and of
first order, in contrast to the linear second-order rule (41) derived above. The two iteration
rules must yield the same results of course; but, as we shall see, they are non-trivially
related.

To proceed, we restate that given our initial wavefunction is Gaussian, we can expect
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Figure 4. As figure 2 withη = 1+ i/2.
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Figure 5. As figure 2 withη = 1+ i. Note the 1-cycle atξ = 2.

the wavefunction at all subsequent times to retain a Gaussian form. So, we write

ψn(x) ∼ exp

[
−σn x

2

2b2

]
(46)

where we have omitted the prefactor. The wavefunction at the instant after the pulse is
given by equation (19) which we rewrite here as

ψ+n (x) ∼ exp

[
−(σn + iξ)

x2

2b2

]
. (47)
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The next stage of the evolution is free wave propagation, which is most easily expressed
in Fourier space:ψ̃(k, t + τ) = ψ̃(k, t)exp[−ib2k2/2]. Now the Fourier transform ofψ+n
takes the form

ψ̃+n (k) ∼ exp

[
− k2b2

2(σn + iξ)

]
(48)

and so

ψ̃n+1(k) ∼ exp

[
−k

2b2

2

(
1

σn + iξ
+ i

)]
. (49)

Finally, inverse transforming the above expression we arrive at

ψn+1(x) ∼ exp

[
−σn+1

x2

2b2

]
(50)

where
1

σn+1
= 1

σn + iξ
+ i. (51)

This iteration rule requires only one piece of initial datum. Evolving the initial wavefunction
to t = τ − 0, we have

σ1 = η/(1+ iη). (52)

Given this nonlinear iteration rule, one might expect the system to have some kind
of non-trivial (chaotic) dynamics. However, with the benefit of hindsight, we know from
section 3 that in fact the system has either periodic or quasiperiodic behaviour (in the stable
regime 06 ξ 6 4). This simpler behaviour is not apparent from the nonlinear rule for{σn},
but we can prove it is the case by connecting this rule to the linear second-order rule for
{qn} given in equation (41).

Referring to (34), we have the relation (forn > 1)

σn = −i

(
qn + iqn−1

qn

)
. (53)

Substituting this result into the nonlinear iteration rule (51), we find equality only ifqn
satisfies the linear iteration rule (41), as required for consistency. In the absence of hindsight,
relation (53) would be seen as a rather remarkable linearizing transformation. In order to
probe the general (quasi)-periodic behaviour of this system, the linear iteration rule is the
description of choice. However, there are two other aspects of this system which are much
more easily described by the nonlinear rule given above.

The first of these is the existence of a special periodic motion with periodτ . We may
identify this by simply demanding thatσn+1 = σn(= σ) in equation (51). This yields a
quadratic equation forσ with (normalizable) solution

σ = 1

2
[ξ(4− ξ)]1/2− iξ

2
. (54)

Now, the initial value ofσ is set by equation (52). So this special ‘1-cycle’ is only possible
(for a given value ofξ ∈ [0, 4]) for a special valuēη of the parameterη (which, we remind
the reader, describes the initial Gaussian wavefunction). We may invert (52) forη̄ to find

η̄ = sinφ + i(1− cosφ) = 2 sin(φ/2) exp(iφ/2) (55)

where we have usedφ in place ofξ , as defined in equation (44). An example of this 1-cycle
is shown in figure 5. This 1-cycle is a purely quantum effect, since the classical system
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can only have cycles of period> 2τ for obvious reasons. One might term this motion ‘the
sound of one hand clapping.’

The second aspect of the quantum system which may be extracted more easily from
the nonlinear iteration is the behaviour of the system as the time between pulses is taken to
zero. Before taking this limit, it is important to scale outτ in other quantities. Now, we
shall compare the system (in the limit ofτ → 0), to the quantum mechanics of the static
harmonic potential. For the latter system, the potential is taken to beVs(x) = κx2/2. The
time- averaged potential of the PHP isV̄ (x) = λx2/2τ . Thus we shall take the limitτ → 0
andλ → 0 with the ratioλ/τ → κ. It is also convenient to definevn = σn/τ . Then the
wavefunction just prior to pulsing is given by (cf equation (46))

ψn(x) ∼ exp
[
− m

2h̄
vnx

2
]
. (56)

From (51), the iteration rule forvn takes the form

1

vn+1
= 1

vn + iλ/m
+ iτ. (57)

Taking theτ → 0 limit as prescribed above, the above iteration rule tends to the first-order
differential equation forv(t):

dv

dt
= i

( κ
m
− v2

)
. (58)

Now, the ground state wavefunction of the static harmonic potential is a simple Gaussian
ϕ(x) ∼ exp(−mωsx2/2h̄), where the oscillator frequencyωs =

√
κ/m. Referring to the

differential equation forv(t), we see thatv = ωs is a fixed point of the dynamics. In other
words, if we initialize the wavefunction to be the ground state wavefunction of the static
harmonic potential, then the wavefunction will be completely unaffected by the PHP in the
limit of τ → 0. We stress that there will be no dynamical evolution whatsoever. This is in
contrast to the wavefunction of a truly static harmonic potential, which if prepared in the
ground state, will still have a dynamically evolving phase factor e−iωs t/2. The pulsing of the
potential essentially resets the clock of the wavefunction such that the dynamical phase is
‘stuck’ at t = 0. This effect may have important consequences for numerical integration of
the time-dependent Schrödinger equation. If one places the equation on a discrete temporal
grid, then one is pulsing the potential. From the present example, we see that a pulsed
potential (on however fine a grid) cannot mimic a static potential. The dynamical phase
information is irretrievably lost. Subjecting a system to very high frequency pulses was
also studied recently in the context of controlling decoherence [15].

One can examine the dynamics of the PHP via the differential equation (58) in more
detail. For instance, one can examine the evolution of a Gaussian wavepacket which is not
tuned to beϕ(x). Let us restrict ourselves to an initial condition forψ which is real, and
therefore completely described by the width of the wavepacket, which we denote byl0, and
which is related to an effective frequencyω = h̄/ml20. A straightforward solution of (58)
yields

ψ(x, t) ∼ exp

[
− x

2

2l20

(
1+ (i/r) tan(ωt)

1+ ir tan(ωt)

)]
(59)

wherer = ω/ωs . Consequently, the probability densityP(x, t) ∼ exp(−x2/γ 2) with

γ (t) = l0
(

1+ r2 tan2(ωt)

1+ tan2(ωt)

)
. (60)
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The expectation value of the kinetic energy is given by

Ekin(t) = h̄ω
4

(
1+ (1/r)2 tan2(ωt)

1+ tan2(ωt)

)
. (61)

In the limit of τ → 0 there is also an effective potential energy (from averaging over the
many pulses in a given small time interval). The expectation value of the potential energy
may be found from

∫
dx ψ∗(κx2/2)ψ , with ψ(x, t) given by (59) above. One finds

Epot(t) = h̄ω

4r2

(
1+ r2 tan2(ωt)

1+ tan2(ωt)

)
. (62)

The total energy is then found to be

Etot(t) = h̄ωs
4

(
r + 1

r

)
(63)

which is independent of time as expected.

5. Quantum particle in PHP: 3

In this third and final section concerning quantum dynamics in a PHP, we shall consider an
initial wavefunction which is off-centred. Thus the expectation values of the position and
momentum of the particle will be non-zero, and we may make closer contact between the
quantum PHP and its classical counterpart. We shall utilize the iteration rules from both
sections 3 and 4.

We begin by deriving the first-order iteration rules using the method described in
section 4. Consider an off-centred Gaussian at the moment prior to thenth pulse:

ψn ∼ exp

[
−σn x

2

2b2
+ dn x

b

]
. (64)

Following the treatment for the centred Gaussian (cf equations (46)–(50)) we find that the
iteration rule for{σn} is unchanged from the form given in equation (51), and the rule for
{dn} is

dn+1 = dn σn+1

(σn + iξ)
. (65)

With the aid of (51) and (53) we may rewrite this as

dn+1qn+1 = −idnqn (66)

which may be iterated immediately to give the solution

dn+1 = (−i)n
d0

qn
(67)

where d0 is the parameter introduced to describe the initial off-centred wavefunction:
ψ(x, 0) ∼ exp[−ηx2/2b2+ d0x/b].

Our present interest will not so much be in{σn} and{dn}, but rather in the expectation
values of the position and momentum. Explicitly evaluating the appropriate expectation
values using equation (64) we find

x̄n ≡
∫

dx ψ∗xψ = b (dn + d
∗
n)

(σn + σ ∗n )
(68)

and

p̄n ≡
∫

dx ψ∗(−ih̄∂x)ψ = − ih̄

b

(σ ∗dn − σnd∗n)
(σn + σ ∗n )

. (69)
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It is convenient to re-express the above relations in terms of{qn} and {dn} which, due
to equation (67), amounts to expressing the expectation values purely in terms of{qn} and
d0. Using the known relations (37), (53) and (67), we have

x̄n = inb

2ηR
[qnd

∗
0 + (−1)nq∗nd0] (70)

and

p̄n = inh̄

2bηR
[qnd

∗
0 + (−1)nq∗nd0+ iqn−1d

∗
0 − i(−1)nq∗n−1d0]. (71)

We are now in a position to utilize the linear iteration rule (41) for the{qn}. Taking
neighbouring differences between the expectation values of the position and momenta, we
may use (41) and the definitionb = (h̄τ/m)1/2 to derive

x̄n+1− x̄n = τ

m
p̄n+1 (72)

and

p̄n+1− p̄n = −λx̄n. (73)

A direct comparison between these iteration rules with those given in equation (5) for the
classical system reveals that themean motionof the off-centred Gaussian wavefunction in
the PHP is identical to the purely classical motion—a non-trivial example of Ehrenfest’s
theorem [14].

Finally, we shall consider the expectation value of the energy. Using the form for the
wavefunction given in equation (64) we have (cf equation (25))

En = h̄

2τ

[ |σn|2
(σn + σ ∗n )

− (σ
∗
n dn − σnd∗n)2
(σn + σ ∗n )2

]
. (74)

Referring to equation (28), we see that the first term on the right-hand side is precisely the
‘quantum’ energy for the centred Gaussian, studied in section 3. Referring to equation (69),
the second term on the right-hand side is determined as nothing more than the classical
energyp̄2

n/2m studied in section 2. Thus, the energy of the off-centred Gaussian falls neatly
into two separate pieces: a ‘classical’ energy determined purely by the expectation value
of the momentum, and a ‘quantum’ energy determined purely by the internal fluctuations
of the wavepacket in the co-moving frame. This ends the study of a quantum particle in a
PHP.

6. Directed polymer in PHP

Quantum mechanical Green functions may be rewritten as path integrals. It is within this
formalism that one may appreciate the close mathematical connection between quantum
processes and the statistical mechanics of directed lines. We shall use this connection to
discuss the physics of a directed line in thermal equilibrium with a PHP, which is physically
realized by a set of static, planar (or sparse [12]), harmonic potentials.

We begin by writing the Feynman path integral [13] for the Green function of a quantum
mechanical particle in a potentialV (x, t) (where we restrict our attention to one dimension
for simplicity):

G(x, t; x0, t0) =
∫ y(t)=x

y(t0)=x0

Dy(s) exp

{
i

h̄

∫ t

t0

ds

[
m

2

(
dy

ds

)2

− V (y(s), s)
]}
. (75)
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This is to be compared with the (restricted) partition function for a directed line in thermal
equilibrium with a static potentialV (x, z). By ‘directed line’ we mean a connected path
in a two-dimensional space (x, z), which may adopt any configuration whatever, so long as
it is directed along the longitudinal (z) direction. The statistical mechanics of such objects
is of interest in several fields, including directed polymers [16], and superconducting flux
lines [17]. The partition function for a line with one end pinned at(x0, z0) and the other
pinned at(x, z) is given by

Z(x, z; x0, z0) =
∫ y(z)=x

y(z0)=x0

Dy(s) exp

{
− 1

T

∫ z

z0

ds

[
κ

2

(
dy

ds

)2

+ V (y(s), s)
]}

(76)

whereT is temperature (with Boltzmann’s constant set to unity) andκ is the elasticity of
the line.

The obvious similarity between these two path integrals can be misleading, since it is
important to remember that the relation between them exists at a strictly mathematical level.
Given the analytic solution to one path integral, one may infer the solution to the other by
an analytic continuation from ‘real time’t to ‘imaginary time’ z. However, the physical
properties of the two systems are generally quite distinct and little may be inferred about
the physics of one of the systems, if only qualitative information about the physics of the
other is available. This will become clear in the present case of a PHP, as we shall soon
see.

The physical meaning of a directed line in equilibrium with a PHP is as follows. The
PHP itself consists of potentials which only exist on discrete transverse lines, and are
regularly spaced along the longitudinal axis. These potentials are harmonic and centred at
x = 0. The directed line (which we shall take to be pinned at(0, 0) and to have a length
z) equilibrates itself in these potentials, meaning that the free energy is minimized as a
result of the competition between the wandering of the line (entropy), and its elastic and
potential energies. One may find an application within the field of superconductivity. In an
array of flux lines, one may construct an approximate (harmonic) ‘caging’ potential for a
given flux line, by averaging over the repulsive line–line interactions which it experiences
with its neighbours. Furthermore, in the strongly layered cuprates [18] (which form the
most important class of high temperature superconductors) the supercurrents only exist in
well separated Cu–O planes. Thus the flux line (meaning the imaginary line connecting the
planar centres of magnetic flux) will only experience the caging potential in discrete, but
regular, transverse planes.

Given the relationship between the quantum system and the directed line at the level of
path integrals, there is naturally a partial differential equation forZ corresponding to the
Schr̈odinger equation. Defining a ‘rigidity’ν = T/2κ, and absorbingT into the potential,
we have

∂zZ = ν∂2
xZ − V (x, z)Z. (77)

The potential is taken to be a PHP, expressed as

V (x, z) = gx2

2

∞∑
n=1

δ(z− nd). (78)

The initial condition implicit in the path integral (76) isZ(x, 0) = δ(x), but we may
generalize this to any desired function. Following our earlier work on the quantum system,
we shall take a Gaussian initial condition

Z(x, 0) = exp[−x2/a2] (79)
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which would naturally arise from thermal wandering of a directed line from aδ-function
initial condition. The normalization ofZ deserves mention. Whereas in the quantum
system, the wavefunctionψ is normalized by requiring that

∫
dx |ψ |2 = 1, the partition

function has an arbitrary prefactor, as we only require that
∫

dx P(x, z) = 1, where
P(x, z) = Z(x, z)/ ∫ dx ′ Z(x ′, z) is the probability density of the line.

We shall not enter into any details concerning the analysis of this system, as our results
may be easily reconstructed from the methods presented in section 3 for the quantum
analogue. The present system is described by two dimensionless parameters: an effective
coupling

g̃ = 2νdg (80)

and the ratio

χ = 4νd/a2 = (l/a)2 (81)

which is the square of the ratio of the transverse thermal wandering scalel = (4νd)1/2 and
the initial transverse scalea. The probability density of the line just prior to thenth impulse
is defined as

Pn(x) = lim
ε→0
P(x, nd − ε) (82)

and has the explicit form

Pn(x) =
[
(1− qn−1/qn)

πl2

]1/2

exp

[
−
(
qn − qn−1

qn

)(x
l

)2
]
. (83)

This Gaussian form is completely described by one quantity; namely, the widthγn of the
probability density defined viaPn ∼ exp[−x2/γ 2

n ]. Thus

γn = l
(

qn

qn − qn−1

)1/2

. (84)

The determinants{qn} satisfy the second-order difference equation

qn+2 = βqn+1− qn (85)

whereβ = g̃ + 2, and the initial data areq0 = 1 andq1 = χ + 1.
Let us first study the case ofβ > 2, which corresponds to an attractive (or binding)

PHP with g̃ > 0. In this case it is convenient to define a parameterθ via

coshθ = β/2= 1+ g̃. (86)

Then we find

qn = 1

sinhθ
[sinh(n+ 1)θ + (χ + 1− 2 coshθ) sinhnθ ]. (87)

Substituting this solution into equation (84) yields the final result for the transverse line
scale as a function ofn = z/d:

γn = l
[

(χ + 1− coshθ) tanhnθ + sinhθ

(coshθ − 1)(2 coshθ − χ) tanhnθ + (χ − 2(coshθ − 1)) sinhθ

]1/2

. (88)

For the limit of an infinitely long line,nθ → ∞, the function tanhnθ → 1, and the
above result simplifies dramatically to

γ∞ = l√
ζ

(89)
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with finite n corrections∼e−2nθ . The dimensionless parameterζ is given by

ζ ≡ 1+ sinhθ − coshθ = 1− e−θ . (90)

Note that for

ζ = χ (91)

the transverse scale is asymptotically equal to the initial scalea, meaning that a specially
tuned PHP can exactly compensate the transverse wandering for arbitrarily long lines. The
tuned value of the coupling̃g needed to satisfy equation (91) is

g̃ = χ2

1− χ . (92)

Since the coupling̃g must be positive, we see that such a compensating PHP is only possible
for χ < 1, i.e. for a line whose initial scalea > l. This is clear since whatever the PHP
strength, the line is free to wander a transverse scalel between pulses, and thus we can
never restrict the line toγ∞ = a if a < l.

Regardless of the initial transverse scalea, a very strong PHP is expected to strongly
compress the line to have a scaleγ∞ ∼ l. For g̃ � 1, one can perform an asymptotic
expansion on equation (89) to find

γ∞ = l
(

1+ 1

4g̃
+ · · ·

)
. (93)

The case of a repulsive (or unbinding) PHP is a little more subtle as the line will become
unstable (meaning the probability density becomes unnormalizable) beyond a critical length
depending on the strength of the potential. In fact, it is easy to see that for the line to
survive just one pulse, we requirẽg > −2. It is therefore convenient to define a parameter
θ ′ via

cosθ ′ = 1− |g̃|/2. (94)

We find for the determinants

qn = 1

sinθ ′
[sin(n+ 1)θ ′ + (χ + 1− 2 cosθ ′) sinnθ ′] (95)

and using equation (84),

γn = l
[

(χ + 1− cosθ ′) tannθ ′ + sinθ ′

(cosθ ′ − 1)(2 cosθ ′ − χ) tannθ ′ + (χ − 2(cosθ ′ − 1)) sinθ ′

]1/2

. (96)

This expression is not valid for arbitrarily largen. There exists a maximum lengthn∗d for
the directed line, beyond which it no longer exists as a connected elastic structure. The
valuen∗ may be found by demanding thatqn > 0 for all n 6 n∗. Referring to equation (95)
we find thatn∗ = [w∗], where

w∗ = 1

θ ′

[
π

2
+ tan−1

(
χ + 1− cosθ ′

sinθ ′

)]
. (97)

For |g̃| → 2, θ ′ → π/2 and 1< w∗ < 2 as expected.
The more interesting limit of|g̃| → 0 yields the result

w∗ ∼ π

|g̃|1/2 −
1

χ
+O(|g̃|1/2). (98)

The transverse scale of the density may also be studied in the limit of small|g̃|. Referring
to equation (96) we findγn ∼ l

√
n for nθ ′ � 1, which is pure thermal wandering. Asn

increases further, the potential starts to have an effect, and fornθ ′ ' π/2, we find that the
transverse scale increases linearly with line lengthγn ∼ ln, with a prefactor depending in a
non-trivial way onχ .
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7. Conclusions

In this paper we have studied in detail the action of a pulsed harmonic potential on three
systems: a classical particle, a quantum particle, and a directed line. The first and second
systems share some properties via their mechanics, whereas the second and third share a
common mathematical basis via the path integral formalism. The pulsing was taken to be
regular with a periodτ (or a longitudinal wavelengthd in the case of a directed line).

The classical particle was studied in section 2. It was found to have stable (or bounded)
dynamics as long as the dimensionless couplingξ (cf equation (7)) lies in the range
0 6 ξ 6 4. Otherwise the motion is unstable. Forξ < 0, the particle is accelerated to
|x| = ∞, whilst for ξ > 4, the particle ‘ping-pongs’ with ever increasing amplitude away
from the origin. In the stable band, there is either periodic or quasiperiodic motion. We
introduced two classes of periodic motion: PMI(n), for motion where all physical quantities
have periodnτ ; and PMII(n), for motion where the energy has periodnτ . We found that
the condition for PMI(n) motion was thatφ = Mπ/n whereφ is a convenient parameter
defined as cosφ = 1− ξ/2, andM is a positiveeven integer satisfyingM 6 [n/2]. Thus
the simplest PMI motion occurs forn = 3 andM = 2 (corresponding toξ = 3). PMII(n)
motion was found to occur forφ = M ′π/n with M ′ an integer (even or odd) in the range
1 6 M ′ 6 [n/2]. The simplest PMII motion occurs forn = 2 andM ′ = 1 (corresponding
to ξ = 2). These periodic motions are independent of the initial positionx1 and initial
momentump1. We also found one special PMI(2) motion which requiresξ = 4 and a
specially tuned initial conditionp1 = 2mx1/τ .

The dynamical properties of a quantum particle in a PHP were studied in sections 3–5.
The first two sections concentrated on a Gaussian wavepacket centred at the origin; whilst
section 5 pertained to the case of an off-centred Gaussian wavepacket, which has non-zero
expectation values of position and momentum, and may therefore be compared directly to
the classical particle studied in section 2.

In section 3 we studied the centred Gaussian wavepacket in a PHP using the iteration
properties of the determinants ofn-fold Gaussian integrals. This led to second-order linear
iteration rules similar to those found in section 2. The stability band for the wavepacket
is 0 6 ξ < 4 as in the classical case. Ifξ < 0, the wavepacket is stretched more with
each pulse and the width monotonically diverges with time. Ifξ > 4, the wavepacket is
squeezed so tightly after each pulse that the velocity of expansion of the width of the packet
grows ever greater after each pulse (due to quantum uncertainty). Within the stable band,
there are periodic and quasiperiodic dynamics. In the former, the cycles are periodic for
all physical properties, thus there is no classification into PMI and PMII as in the classical
case. The condition for a cycle of periodnτ is φ = Mπ/n with M an integer (even or odd)
in the range 16 M 6 [n/2], whereφ is defined via cosφ = 1−ξ/2 as used in the classical
case. The energy portraits for the classical and quantum particles are shown in figures 1–5,
and show several distinct features, especially with regard to the upper and lower bounding
curves.

In section 4 we analysed the centred Gaussian wavepacket using Fourier methods,
which resulted in a first-order, but nonlinear, iteration rule. We showed its equivalence to
the second-order linear iteration rule of section 3. This first-order rule allowed two new
aspects of the problem to be analysed with ease. The first is the existence of a special cycle
of periodτ , which is a purely quantum mechanical effect, as a classical system must have a
cycle of at least 2τ . This 1-cycle exists only for an initial complex Gaussian wavefunction
with an inverse variance tuned to the harmonic coupling viaη̄ = 2 sin(φ/2) exp(iφ/2).
An example of a 1-cycle is shown in figure 5. The second aspect is the behaviour of the
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system as the timeτ between pulses is taken to zero. We found that if the initial wave
function is chosen to be the ground state of a static harmonic potential (with oscillator
frequencyω = (λ/mτ)1/2), then this wavefunction is a fixed point of the PHP dynamics
as τ → 0. This result shows that a pulsed potential with arbitrarily small period cannot
mimic a static potential, for even though the ground state wavefunction is a fixed point
of the PHP dynamics, there is no phase evolution as would be found for a wavefunction
in the static potential. The PHP continually resets the phase clock. This causes concern
with regard to numerical integration of the time-dependent Schrödinger equation, where one
may discretize time, in which case one is implicitly modelling a static potential by a pulsed
potential.

In section 5 we allowed the Gaussian wavepacket to be off-centre, which allowed
there to be an evolution of the expectation valuesx̄ and p̄ of the position and momentum
respectively. Using our previous iteration rules in tandem, we showed that these expectation
values obeyed the same difference equations as the classical position and momentum, as
studied in section 2, thus verifying Ehrenfest’s theorem in a non-trivial setting. Furthermore,
we evaluated the energy of the wavepacket, and found that it split neatly into two pieces:
a ‘quantum piece’ equal to the energy of the centred Gaussian wavepacket, and a ‘classical
piece’ equal top̄2/2m.

We moved away from the quantum PHP, and in section 6 studied the statistical
mechanics of a directed line in a harmonic potential which exists only on discrete transverse
lines which are regularly spaced in the longitudinal direction. This system is the imaginary
time analogue of the quantum system, as is clear from the path-integral formalism. Using
the same methods as in section 3, we found that this system has two qualitatively different
regimes, depending on the dimensionless couplingg̃ (which is the analogous quantity toξ
as used in the mechanical systems). Forg̃ > 0, we found that the transverse fluctuations of
the line saturate rapidly tol/

√
ζ , wherel is the transverse thermal wandering scale between

pulses, andζ = 1− e−θ , where coshθ = 1+ g̃. For a very large attractive coupling, the
transverse scale saturates atl with O(1/g̃) corrections. For̃g < 0 the line has a maximum
length n∗d beyond which it is destroyed (as a connected elastic entity) by the repulsive
PHP. An exact expression was derived forn∗ (as given in equation (97)), which has the
asymptotic form for|g̃| → 0: n∗ = [w∗], with w∗ ∼ π/|g̃|1/2. Prior to the line breaking
up, the transverse wandering grows diffusively forn|g̃|1/2 � 1, and linearly withn for
n|g̃|1/2 ' π/2.

These results show clearly the subtle differences which exist between the mechanics of
the classical and quantum particles in a PHP; and also the differences which exist between
the quantum and statistical path integral expressions for the PHP. In the former case we
have seen that the quantum system has another level of complexity beyond the mean (or
classical) motion. The periodic motion of the centred Gaussian wavefunction has no classical
counterpart, and its energy portrait certainly deserves more study. In the latter case of the
quantum versus statistical path integrals, we have seen how no vestige of the periodic
behaviour of the quantum system remains in the physics of the directed line. It has a much
simpler asymptotic (n→ ∞) behaviour, since all the interesting quantum effects are here
damped exponentially inn. This serves as a warning that one can only retrieve complete
quantum information from an imaginary time path integral, if one has complete analytic
information.

We believe that these results may also be of some practical interest. It is well known
how to trap single particles in specially prepared potentials formed from external magnetic
fields [19]. Thus it is possible to make the trapping potential time-dependent by externally
varying these fields. It would be of interest to use such external variation to mimic a PHP,
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and to test the generality of the results obtained here; namely, the stability band, and its
associated periodic and quasi-periodic dynamics.

As detailed in section 6, one can find applications for the directed line in a PHP in
the field of superconductivity. Of more recent interest in this field is the role of disorder
in layered materials [20], and its efficacy in pinning flux lines. Disorder is a notoriously
difficult effect to describe analytically, and there are essentially no analytically solvable
cases of directed lines in a quenched disorder potential. We consider the generalization
of the regularly pulsed PHP to one with random pulsing intervals (along with a localized
columnar pin) to be a prime candidate for such a solvable system, using the framework
developed in this paper.
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